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Problems of heat and mass transfer involving a moving boundary are encountered in 
freezing, melting, diffusion of species with or without chemical reaction, evaporation, 
condensation, and in allied fields. In the present investigation the transient solidification of a 
finite slab of a binary alloy with a moving boundary is considered. The slab is taken to be 
superheated initially with a uniform temperature distribution. Solidification starts after one 
surface is cooled by convection while other surfaces are kept insulated. Temperature 
distribution and the position of moving boundary are determined by solving a non-steady- 
state energy equation analytically. Predicted results are compared with available 
experimental results and are found in good agreement. 
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Introduction 

Transient heat transfer problems involving melting or freezing 
are important for many engineering applications, including 
casting, food processing, polymer production, and welding. 
Especially in metal casting, where the grain structure of the cast 
specimen depends on the local time-temperature history of the 
specimen, transient heat transfer techniques are widely used to 
predict local and overall phases and associated grain structures. 

The above problems are popularly known as moving- 
boundary problems, due to the movement of different phases 
with time from one end to the other. Due to the complex nature 
of solidification phenomena, only its mathematical modeling 
and subsequent analytical solution become difficult. So far, due 
to inherent nonlinearities only a few exact solutions for such 
problems are available in the literature. Neumann 1 has reported 
an exact solution for the determination of temperature 
distribution and phase change position of a semi-infinite body. 
Weiner 2 and Citron 3 have studied identical problems and 
obtained similar solutions to those of Neumann. Jones 4 has 
reviewed the application of the approximate solution technique 
to such problems. In spite of these efforts, the closed forms of 
exact solutions are rarely available for slabs of finite thickness. 

Due to the complex nature of exact and numerical solution 
techniques available for these problems, the usefulness of a fairly 
accurate approximate solution looks promising. One such 
useful technique is the heat balance integral method developed 
by Goodman. 5 This method has many advanced features. It can 
be applied to a wide range of problems, and the accuracy 
obtained is often sufficient for practical purposes. However, it is 
well known that this method is sensitive to the choice of the 
approximating temperature profile. It is also difficult to predict 
the accuracy that may be achieved by a particular profile. 
Noble 6 suggested the most promising way of systematically 
improving the accuracy of the heat balance integral method by 
repeated special subdivision, using quadratic profiles. For  each 
subdivision of the present problem a quadratic temperature 
profile has been selected. 
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S t a t e m e n t  o f  t h e  p r o b l e m  

A mold (see Figure 1) of finite dimension was kept in a coolant 
stream such that cooling of the molten mass took place from the 
bottom of the mold only. All sides except the bottom were 
insulated so as to achieve a perfect unidirectional freezing with 
hardly any convection current in the molten mass. Heat was 
transferred to the metal wall by conduction and then by 
convection to the cooling media. The overall heat transfer to 
coolant for such systems will depend upon the thermophysical 
properties, velocity of the cooling media, thermal conductivity 
of the metal wall, and the freezing phase. However, in most cases 
when cooling is done by air, the air-side heat transfer coefficient 
controls the overall heat transfer. 

For the present work, a one-dimensional solidification of a 
superheated alloy (50-50 lead-tin) where the phase change 
occurs over a wide range of temperatures was selected. During 
freezing, the physical properties of each phase were assumed 
constant separately. 

The whole process of freezing can be divided into five distinct 
stages, based on the physics of the problem: 

Stage 1. Stage 1 begins with the cooling process and ends 
when the wall temperature drops to Tb--a temperature at which 
mushy region starts. 

• Insulation 
T I~///~ ~ Molten mass 

89 mmj_ ~ . ~  Mould 

x_ Cold surface ~ Cooling media 

Figure 1 Description of mold 
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Stage 2. During stage 2 the mushy and liquid regions coexist. 
Stage 2 ends when the effect of cooling penetrates to the extreme 
opposite end. 

Stage 3. In stage 3 the mushy and liquid regions also coexist. At 
the end of this stage the complete slab converts the mushy state. 

Stage 4. In stage 4 the slab remains in the mushy state. This stage 
ends when solidification begins at the cooling end of the slab. 

Stage 5. The mushy and solid regions coexist in stage 5. This 
stage ends when the complete slab converts to the solid phase. 
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Using the heat balance integral technique in the affected liquid 
region along with a cubic temperature profile of the form 

01 ~ = A + BX + CX 2 (2) 

and boundary conditions la- ld ,  we obtain the value of 011: 

(P1 - X )  2 
011=1 pE+2P1R, (3) 

The first time period ends when the temperature of the free slab 
surface reaches T b. The time zl when this occurs is 

z 1 = 2R*2[Ot2, - in(1 + 0 x 2,)] (4) 

F o r m u l a t i o n  a n d  s o l u t i o n  o f  t h e  p r o b l e m  

In the formulation of the problem, all time periods, basic 
equations, and boundary conditions have been written in 
nondimensional form. 

First t ime per iod 

During the first period the temperature at position X = 0 is 
reduced to T b at time tl. The basic equation and boundary 
conditions for the affected liquid region in nondimensional form 
are as follows: 

~011 02011 
& - t ? X ~ ,  0 < X < P 1 ,  0 < z < %  (1) 

X=P1,  011=0 (la) 

~011 = 0  (lb) X = P1, ~?X 

~3011 1 
X=O, - 011 (lc) 

ox R~ 

z=0 ,  P1 = 0  (ld) 

Second t ime per iod 

During the second time period, both liquid and mushy regions 
exist. The mathematical statements of the problem for both 
regions are as follows: 

(i) liquid region 

~012 ~2012 
~z OX 2 ' P2<X<P1 ,  z l < r < ' r  2 (5) 

X = P1, 012 = 0 (5a) 

c~012 
X = P~, - -  = 0 (5b) 

dX 

X = P  2, 012=012b (5C) 

0012 OOzz 
X=P2, KL ~ -- ~ (5d) 

T ='1~1, 012=011 (5e) 

"r=T 1, P 2 = 0  (5f) 

N o t a t i o n  

C~ Specific heat 
C v Pseudo specific heat 
h Heat transfer coefficient 
k Thermal conductivity 
K L Thermal conductivity ratio kL/k M 
K M Thermal conductivity ratio kM/k s 
L Slab length 
P Distance of cooling penetration 
R k Ratio k/h 
S Liquidus phase front position 
t, Time constant 
Tjk Temperature variable 
To Ambient temperature 
T, Initial temperature 
Tb Liquidus temperature 
To Solidus temperature 
v Solidus phase front position 
X Distance from cooled surface 
:t Thermal diffusivity 

Pseudo thermal diffusivity k(C v + Cv)/P 
p Density 

Subscripts 
k l, 2, 3, 4, 5 designates time when used with t 

1, 2, 3 designates liquid, mushy, and solid regions, 
respectively 

Nondimensionalized numbers 
o (Tj- To)/(T,- To) 

¢WL 2 
X x/L 
521 ~2/0~1 
0~31 0~3/~ 1 
P1 P/L 
P2 S/L 
P3 w/L 
S'~ S2/L 
e? &/L 
012 , (T , -  rb)/(T b -  To) 
0,2~ (T~- ro)/(r,-  To) 
012o (T , -  rb)/(r , -  To) 
02,,~ (T~ - ro)/(T ̀ -  To) 
0=o To/(T,- To) 
0'3~o To/(To-- TO 
02,b Td(To- TO 
012o To/(To- TO 
02,,0 TJ(T~-  To) 
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(ii) mushy region 

~022 ~2022 
t ~ - - -  ~X ~ '  0 < X < P 2 ,  r l < z < r 2  (6) 

X = P2, 022 = 012b (6a) 

13022 1 
X = 0, - 022 (6b) 

c~X R~ 

The temperature profiles for the liquid and mushy regions can 
be found in the same way as in the first time period, using the 
heat balance integral technique. 

0 (P'--X'~2 
012 = I -  12o ~ p ~ }  (7) 

^ 3P2 ] KLP2 Vt2b+2 ~ - 0 2 2 0 j  022 = 012b pl_P2 

[-012b KLP2012b 3P2 0 4022°R*-] 
+ X [ - ~ -  (p _P2)R ~ "F 2R,~ ~ 220 2R,+3P2_ ] 

2[-/_--__022°R2 KLOI2bR~ O12b +X 
LP2(2R'~ + 3P2) (P1-P2)P2(ER + aP2) 2P2R'~ 

KLO12b 3P20220]  

+ 2(Pl_P2)R, ~ ~ ] (8) 

This period ends when the effect of cooling spans the entire slab; 
i.e., P1 = l, z =z  2. Time is obtained from Equations 6 and 8 
using appropriate boundary conditions. 

022b 
r2 - 2R* + 3P 2 / KLP 2 KLP 2 3P 2 \ 1 K L 

10~2~;~-0 +~ ,, +~0h0]+~-~z0h0+ 
P2R~ 2 \ " - - - 2  " - - - 2  ~"2 / =2"x2 P2(1 - P2) 

(9) 

Third t ime per iod 

Liquid and mushy regions exist during the third period, which 
ends when the mushy region reaches the position X = 1. Basic 
equations and the boundary conditions for the regions are as 
follows: 

(i) liquid region 

13013 d2013 
c ~  -=  t3X ~ '  P2 < x < l ,  

~013 X = ~ - = 0  

X =  P2, 013=012b 

~013 ~023 
X=P2,  KL dX = dX 

T = ~  2, 0 1 3 = 0 1 2  

$2 , ~=~2, P2=~-=S2 

Z2 <'C <'~ 3 (10) 

(lOa) 

(lOb) 

(10c) 

(lOd) 

(lOe) 

(ii) mushy region 

(~023 -- ~2023 0 < X < P 2  ' 
c~z c3X2 ' 

X = P 2 ,  023-~-012b 

t~023 1 
X = 0, c~X = R--~ 023 

"L'2 < T < 'C 3 (ll)  

(lla) 

(llb) 

"C -~ "¢ 2, 023=022  (llc) 

The temperature profile for the liquid region was found by the 
heat balance integral technique. The mushy region temperature 
distribution is the same as for the previous period except the time 
continues to ~3 and 022 becomes 023 and R~ becomes R~. 

013=0,2b 0feb [2P2+p2-2X+X 2] (12) 
2(P 1 - P2)(P2 -- 1) 

[012b KLP20'2b 3P2 ][- X X2 ] ~0-- 1 /  023 = P,-P,  ++..3°2% 2,P+,R  
+ { X  2 . "~ 2R~ KLOI2 b R'~ X 2 

+ V 2 2 ° ~ 2 - A / ] 2 R ~ P 2 ' ' -  P1-P2 (2R~+aP2) P2 
(13) 

The time r3 at which the complete slab is converted into the 
mushy state is obtained from Equations 11 and 13 and the 
appropriate boundary conditions. 

022b 
z3 KL 2R] + 3P 2 f(022b -~ KLP2 3P 2 , ") 1 , 

P2 R*2 , 1)1~2+2~022° I+P2~-2  *022°-¢" P2(1-P2 ) 

(14) 

Fourth time per iod 

Throughout the fourth period, the slab exists in the mushy state 
and the following equations apply: 

(~024 ~2024 
0 < X <  1, Za<Z<r + (15) 

dr = t~X 2 ' 

S = 1, (~022 = 0 (15a) 
dX 

c~024 1 
X=O, dX = ~ 0 2 +  (15b) 

T-----T3, 024.=023 (15C) 

Using the heat balance integral technique and applying the 
initial condition, we obtain the temperature profile for the 
mushy state: 

024----024 v "-~ ~ , 4 v  -'b ~ X 2 (16) 
R+ 2R+ 

The period ends at time 14 when the temperature at position 
X = 0 reaches the solidus temperature, which signifies the start 
of solid formation. 

Z+ = 024oR* (17) 

Fifth time per iod 

A mushy region and a solid region exist during the fifth period as 
the solidus phase front moves from position X = 0 to position 
X = 1. The problem formulation for this period becomes the 
same as the third period if appropriate notational changes are 
made by replacing the mushy and liquid regions with solid and 
mushy regions, respectively. The temperature profiles for both 
regions become 

(i) solid region 

[ KMP2 0 3P30 -][-1 X X2 1 
035 = 0240 ~ 24"b-1'-'~" 22011 -~ 

- 1 - - 3  "-,'5 JL R~ 2PAR* 
I/ X 2 . "~ 2R* KM024 b R~ 2 2 

pl-e3 2R ÷3P3 P3 
(18) 
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Figure 2 
alloy 

. . . .  Experimental 
Analytical 

I I I I I I 
0.14 0.28 0.42 0.57 0.71 0.85 1.0 

Distance from cooled surface (X) 

Temperature profiles for solidification of 50-50 tin-lead 

Goodman heat balance integral method. The freezing process 
was considered to be unidirectional. The process of freezing was 
considered to pass through five different stages, characterized by 
the condition of fluid inside the mold and the boundary 
condition, before it solidifies completely. The necessary 
equations required to predict the non-steady-state temperature 
profile along the thickness of the mold and the time period 
necessary to complete each stage were calculated. To test the 
extent of prediction of the model, it was tested with the 
experimental result of Muehlbaure 7 for solidification of a 50-50 
lead-tin alloy initially at a superheated temperature of 264°C. 
The experimental and analytical results are compared in Figure 
2. From Figure 2 it is clear that the analytically obtained 
temperature profile along the thickness of the mold closely 
agrees with that of experimental value. The maximum deviation 
observed is less than + 5 ~ .  

The deviation in the result can be attributed to many facts, 
such as uncertainties in the thermophysical properties of a 50-50 
lead-tin alloy, because standard property data are not available. 
The deviation may be partly due to the assumption that physical 
properties do not vary with temperature for a particular phase. 

(ii) mushy region 

025 = 02,v O2,v [2P 3 + P~ - 2X + X 2] (19) 
2(P I - Ps)(Ps- I) 

The time period rs, when the complete slab converts to the solid 
phase, has been obtained as in the case of the third time period. 

035 
z5 2R~'+3P 3/~ KMP3 3P 3_ \ 1 ~ KM 

ltJ35v + - - + - - C J ' s s v l  + - - ~ ' s s v  + 
PsR*" \ I--P3 2R* J PsR~ Ps(1-ps) 

(20) 

Results and discussions 

An approximate mathematical model was developed for the 
freezing of superheated liquid inside a finite mold using the 
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